Project Proposal

Author

Jason Copella


Dataset Proposal

My project will study the a large dataset containing various statistics and salaries for every NBA player on a roster for the 2022-23 season. This will allow me to examine which statisitics are most valued by NBA front offices when deciding how much money they offer a given player, as well as the most important statistics, both basic and advanced, when deciding to give a player a “max” contract. With advanced statistics and analytics consistenly becoming more important in league circles, this will allow me to examine if advanced statistics that go beyond the naked eye have become more valued if front offices. I can also see which stats are most strongly correlated with higher salaries, as well as winning the most games. This will also allow me to see which basic stats are most strongly correlated to certain adavanced stats and vice versa. I plan to utilize a wide range of ggplot methods to examine these results such as correlation heat maps, bar graphs, and basic plots.

Looking at the dataset

Below, I have provided code to load and then examine the first 20 frames of the dataset I plan to use for my project:

final_project_dataset<-read.csv("nba_2022-23_stats_salary.csv")
head(final_project_dataset, n=20)
    X           Player.Name   Salary Position Age    Team GP GS   MP   FG  FGA
1   0         Stephen Curry 48070014       PG  34     GSW 56 56 34.7 10.0 20.2
2   1             John Wall 47345760       PG  32     LAC 34  3 22.2  4.1  9.9
3   2     Russell Westbrook 47080179       PG  34 LAL/LAC 73 24 29.1  5.9 13.6
4   3          LeBron James 44474988       PF  38     LAL 55 54 35.5 11.1 22.2
5   4          Kevin Durant 44119845       PF  34 BRK/PHO 47 47 35.6 10.3 18.3
6   5          Bradley Beal 43279250       SG  29     WAS 50 50 33.5  8.9 17.6
7   6         Kawhi Leonard 42492492       SF  31     LAC 52 50 33.6  8.6 16.8
8   7           Paul George 42492492       SF  32     LAC 56 56 34.6  8.2 17.9
9   8 Giannis Antetokounmpo 42492492       PF  28     MIL 63 63 32.1 11.2 20.3
10  9        Damian Lillard 42492492       PG  32     POR 58 58 36.3  9.6 20.7
11 10         Klay Thompson 40600080       SF  32     GSW 69 69 33.0  7.9 18.1
12 11          Kyrie Irving 38917057    PG-SG  30 BRK/DAL 60 60 37.4  9.9 20.1
13 12           Rudy Gobert 38172414        C  30     MIN 70 70 30.7  5.1  7.8
14 13       Khris Middleton 37984276       SF  31     MIL 33 19 24.3  5.4 12.3
15 14         Anthony Davis 37980720        C  29     LAL 56 54 34.0  9.7 17.2
16 15          Jimmy Butler 37653300       PF  33     MIA 64 64 33.4  7.5 13.9
17 16         Tobias Harris 37633050       SF  30     PHI 74 74 32.9  5.7 11.4
18 17          Kemba Walker 37281261       PG  32     DAL  9  1 16.0  2.7  6.3
19 18            Trae Young 37096500       PG  24     ATL 73 73 34.8  8.2 19.0
20 19           Zach LaVine 37096500       SG  27     CHI 77 77 35.9  8.7 18.0
     FG. X3P X3PA  X3P.  X2P X2PA  X2P.  eFG.  FT  FTA   FT. ORB DRB  TRB  AST
1  0.493 4.9 11.4 0.427  5.1  8.8 0.579 0.614 4.6  5.0 0.915 0.7 5.4  6.1  6.3
2  0.408 1.0  3.2 0.303  3.1  6.7 0.459 0.457 2.3  3.3 0.681 0.4 2.3  2.7  5.2
3  0.436 1.2  3.9 0.311  4.7  9.7 0.487 0.481 2.8  4.3 0.656 1.2 4.6  5.8  7.5
4  0.500 2.2  6.9 0.321  8.9 15.3 0.580 0.549 4.6  5.9 0.768 1.2 7.1  8.3  6.8
5  0.560 2.0  4.9 0.404  8.3 13.4 0.617 0.614 6.5  7.1 0.919 0.4 6.3  6.7  5.0
6  0.506 1.6  4.4 0.365  7.3 13.2 0.552 0.551 3.8  4.6 0.842 0.8 3.1  3.9  5.4
7  0.512 2.0  4.8 0.416  6.6 11.9 0.551 0.572 4.7  5.4 0.871 1.1 5.4  6.5  3.9
8  0.457 2.8  7.6 0.371  5.4 10.3 0.521 0.536 4.6  5.3 0.871 0.8 5.3  6.1  5.1
9  0.553 0.7  2.7 0.275 10.5 17.6 0.596 0.572 7.9 12.3 0.645 2.2 9.6 11.8  5.7
10 0.463 4.2 11.3 0.371  5.4  9.4 0.574 0.564 8.8  9.6 0.914 0.8 4.0  4.8  7.3
11 0.436 4.4 10.6 0.412  3.6  7.6 0.470 0.556 1.7  1.9 0.879 0.6 3.6  4.1  2.4
12 0.494 3.1  8.3 0.379  6.8 11.8 0.574 0.572 4.1  4.6 0.905 1.0 4.1  5.1  5.5
13 0.659 0.0  0.0 0.000  5.1  7.8 0.663 0.659 3.1  4.9 0.644 3.3 8.3 11.6  1.2
14 0.436 1.5  4.9 0.315  3.8  7.4 0.516 0.499 2.8  3.1 0.902 0.8 3.4  4.2  4.9
15 0.563 0.3  1.3 0.257  9.3 15.9 0.589 0.573 6.2  7.9 0.784 3.5 9.1 12.5  2.6
16 0.539 0.6  1.6 0.350  6.9 12.3 0.564 0.560 7.4  8.7 0.850 2.2 3.7  5.9  5.3
17 0.501 1.7  4.4 0.389  4.0  7.0 0.570 0.575 1.5  1.7 0.876 0.9 4.8  5.7  2.5
18 0.421 0.8  3.1 0.250  1.9  3.2 0.586 0.482 1.9  2.3 0.810 0.3 1.4  1.8  2.1
19 0.429 2.1  6.3 0.335  6.1 12.7 0.476 0.485 7.8  8.8 0.886 0.8 2.2  3.0 10.2
20 0.485 2.6  7.1 0.375  6.1 11.0 0.556 0.558 4.7  5.6 0.848 0.5 3.9  4.5  4.2
   STL BLK TOV  PF  PTS Total.Minutes  PER   TS. X3PAr   FTr ORB. DRB. TRB.
1  0.9 0.4 3.2 2.1 29.4          1941 24.1 0.656 0.564 0.248  2.3 16.8  9.7
2  0.8 0.4 2.4 1.7 11.4           755 13.6 0.498 0.322 0.334  2.1 11.4  6.8
3  1.0 0.5 3.5 2.2 15.9          2126 16.1 0.513 0.289 0.317  4.7 16.5 10.8
4  0.9 0.6 3.2 1.6 28.9          1954 23.9 0.583 0.309 0.268  3.7 20.8 12.5
5  0.7 1.4 3.3 2.1 29.1          1672 25.9 0.677 0.267 0.387  1.2 19.5 10.5
6  0.9 0.7 2.9 2.1 23.2          1673 19.7 0.593 0.249 0.260  2.8  9.9  6.5
7  1.4 0.5 1.7 1.6 23.8          1748 23.9 0.623 0.287 0.320  3.7 17.8 10.8
8  1.5 0.4 3.1 2.8 23.8          1939 19.6 0.588 0.424 0.293  2.6 17.0  9.9
9  0.8 0.8 3.9 3.1 31.1          2024 29.0 0.605 0.134 0.604  7.3 30.0 19.1
10 0.9 0.3 3.3 1.9 32.2          2107 26.7 0.645 0.547 0.464  2.4 12.8  7.6
11 0.7 0.4 1.8 1.9 21.9          2279 14.7 0.576 0.584 0.105  1.9 11.7  6.9
12 1.1 0.8 2.1 2.8 27.1          2241 22.4 0.613 0.412 0.227  3.0 12.3  7.7
13 0.8 1.4 1.7 3.0 13.4          2148 18.9 0.675 0.005 0.623 12.2 29.8 21.2
14 0.7 0.2 2.2 2.1 15.1           801 17.4 0.551 0.399 0.251  3.8 14.0  9.1
15 1.1 2.0 2.2 2.6 25.9          1904 27.8 0.627 0.077 0.462 11.3 27.6 19.7
16 1.8 0.3 1.6 1.3 22.9          2138 27.6 0.647 0.116 0.625  7.5 13.3 10.3
17 0.9 0.5 1.2 2.0 14.7          2436 14.8 0.602 0.383 0.153  3.3 17.0 10.3
18 0.2 0.2 0.4 1.2  8.0           144 15.0 0.543 0.491 0.368  2.4 10.6  6.5
19 1.1 0.1 4.1 1.4 26.2          2541 22.0 0.573 0.331 0.460  2.4  7.0  4.7
20 0.9 0.2 2.5 2.1 24.8          2768 19.0 0.607 0.392 0.308  1.7 12.2  7.1
   AST. STL. BLK. TOV. USG.  OWS DWS   WS WS.48 OBPM DBPM  BPM VORP
1  30.0  1.3  0.9 12.5 31.0  5.8 2.0  7.8 0.192  7.5  0.1  7.5  4.7
2  35.3  1.8  1.4 17.1 27.0 -0.4 0.7  0.3 0.020 -0.8 -0.4 -1.2  0.1
3  38.6  1.7  1.3 18.4 27.7 -0.6 2.6  1.9 0.044  0.3 -0.1  0.2  1.2
4  33.5  1.2  1.4 11.6 33.3  3.2 2.4  5.6 0.138  5.5  0.6  6.1  4.0
5  24.5  1.0  3.4 13.4 30.7  4.7 2.1  6.8 0.194  6.0  1.2  7.1  3.9
6  26.6  1.3  1.7 12.9 29.2  2.2 1.2  3.4 0.099  2.9 -1.2  1.8  1.6
7  19.6  2.0  1.4  8.1 27.0  4.9 2.2  7.1 0.194  5.1  0.9  6.1  3.5
8  24.2  2.1  0.9 13.4 29.5  2.3 2.3  4.6 0.114  2.4  0.3  2.8  2.3
9  33.2  1.2  2.1 13.2 38.8  4.9 3.7  8.6 0.204  5.8  2.7  8.5  5.4
10 35.0  1.2  0.8 11.7 33.8  8.2 0.8  9.0 0.205  8.3 -1.2  7.1  4.9
11 11.0  1.0  1.1  8.6 26.4  1.2 1.9  3.1 0.066  1.5 -1.7 -0.3  1.0
12 25.4  1.4  1.7  8.8 28.9  5.4 2.0  7.4 0.159  4.8 -0.7  4.1  3.5
13  5.6  1.2  3.9 14.9 16.3  4.3 3.5  7.8 0.174  0.0  0.7  0.7  1.4
14 30.7  1.4  0.5 13.6 27.4  1.0 1.0  1.9 0.117  1.0 -0.3  0.8  0.6
15 13.0  1.5  5.1  9.5 28.4  5.5 3.4  9.0 0.226  4.6  1.7  6.3  4.0
16 27.1  2.7  1.0  8.2 25.6  9.4 2.9 12.3 0.277  6.7  2.0  8.7  5.8
17 11.4  1.4  1.5  9.0 18.2  3.1 2.8  5.9 0.116  0.6  0.1  0.7  1.7
18 20.1  0.7  1.2  5.7 22.1  0.2 0.1  0.3 0.098  0.3 -0.6 -0.3  0.1
19 42.5  1.5  0.3 15.2 32.6  5.3 1.4  6.7 0.126  5.3 -2.0  3.3  3.4
20 18.7  1.2  0.6 11.0 28.3  4.2 2.9  7.1 0.123  2.7 -0.7  1.9  2.7